A Combinatorial Interpretation of the Legendre-stirling Numbers

نویسندگان

  • GEORGE E. ANDREWS
  • LANCE L. LITTLEJOHN
چکیده

The Legendre-Stirling numbers were discovered in 2002 as a result of a problem involving the spectral theory of powers of the classical secondorder Legendre differential expression. Specifically, these numbers are the coefficients of integral composite powers of the Legendre expression in Lagrangian symmetric form. Quite remarkably, they share many similar properties with the classical Stirling numbers of the second kind which, as shown by Littlejohn and Wellman, are the coefficients of integral powers of the Laguerre differential expression. An open question regarding the Legendre-Stirling numbers has been to obtain a combinatorial interpretation of these numbers. In this paper, we provide such an interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre - Stirling Permutations ∗ Eric

We first give a combinatorial interpretation of Everitt, Littlejohn, and Wellman’s Legendre-Stirling numbers of the first kind. We then give a combinatorial interpretation of the coefficients of the polynomial (1 − x) ∑∞ n=0 { n+k n } x analogous to that of the Eulerian numbers, where { n k } are Everitt, Littlejohn, and Wellman’s Legendre-Stirling numbers of the second kind. Finally we use a r...

متن کامل

The Legendre-Stirling numbers

The Legendre-Stirling numbers are the coeffi cients in the integral Lagrangian symmetric powers of the classical Legendre second-order differential expression. In many ways, these numbers mimic the classical Stirling numbers of the second kind which play a similar role in the integral powers of the classical second-order Laguerre differential expression. In a recent paper, Andrews and Littlejoh...

متن کامل

Combinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obta...

متن کامل

ar X iv : 0 90 5 . 28 99 v 2 [ m at h . C O ] 2 0 M ay 2 00 9 COMBINATORIAL INTERPRETATIONS OF THE JACOBI - STIRLING NUMBERS

The Jacobi-Stirling numbers of the first and second kinds were introduced in 2006 in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial...

متن کامل

Combinatorial Interpretations of the Jacobi-Stirling Numbers

The Jacobi-Stirling numbers of the first and second kinds were introduced in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial interpr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008